
a Fermi National Accelerator Laboratory

TM-1477

VT1
VME/CIPRICO Interface Routines

Dean Alleva
Development and Evaluation Group

RDXomputing
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September 4, 1987

a Operated by Universities Research Association Inc. under contract with the United States Department of Energy

Note Number XXXX

VT1
VME/CIPRICO Interface Routines

-Version-
S0ftware:l.O
0ocument:l.O

September 4, 1987

Dean Alleva
Development and Evaluation Croup

RD/Computing
Fermi lab

Page 2

TABLE OF CONTENTS

1
2
3
4
5
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
7.0

INTRODUCTION
MEMORY UTILIZATION
PARAMETER BLOC1 (CREATION AND LINKING
POLLING AND INTEl ?RUPTS
STATUS REF’OF lTINC
THE ROU TINES

VT1 Initialization ” .
Parameter Block Initialization
Parameter Block Linking
Parameter Block Execution
Ring Buffer Record Initialize
Ring Buffer Record Linking
Error Reporting

Updating Status
Command Routines

CIPRICO Configuration And Fi’rmware Info
Tape Rewind
Tape Read and Write
Putting A Drive Offline
Drive Reset
Tape Erase
Marking Files and Searching Files
Searching Records
CIPRICO Diagnostics

REFERENCES

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........
Irmation
........
........
........
........
........
........
........
........
........

. 3
. 3
. 4
. 5

. 6
. 7

. 7

. 8

. 8

. 9

. 10

. 10

. 11

. 11

. 12

. 12

. 13

. 14

.15

. 15

. 16
. 17

. 17

. 18

. 19

Page 3

1 INTRODUCTION

These
This document details the VME/CIPRICO Interface

routines where designed
routines (VTI) .

to allow programs written in PILS
running on a MVME 101 under Valet-plus to control a CIPRICO tape
controler [l], [2]. The routines fall into two general types.
low level rountines,

The
such as vti make pb, create the data structures

used by the CIPRICO as well- as -manipulate the CIPRICO’s control
registers. The high level routines, such as vti rewind, use the lower
level routines to carry out complete funtionson tape drives. Most
tape operations are
routines.

implemented except for
The creation of

ring buffer record
ring buffer record lists linked to

parameter blocks is possible, but no high level routines
implemented to work with these lists.

are

The routines are written in PILS, a high-level language similar
to BASIC and Pascal.
most applications.

This language is powerful and fast enough for
One of the most powerful features of

Valet/PILS system is the ability
the

to set up exception vectors and
exception handlers directly in a program.
handle interrupts from the CIPRICO.

This feature is used to

This document is divided into six sections, the first is the
introduction. The remaining sections detail memory utilization
parameter block creation and linking, polling and interrupts, statu:
reporting, and the VT1 routines.

It is assumed that the reader is familiar with VME and the
CIPRICO controller as well as the linked list data structure. A copy
of the VT1 software is available on BitNet at
“FNAL::USRtROOT:[ALLEVA.PUBLIC]VTI.SRC”.

Fermi lab as

2 MEMORY UTILIZATION

The CIPRICO requires the creation of parameter blocks in VME
system memory. When the CIPRICO executes a command, it retrieves the
command from a parameter block. Parameter blocks contain a link field
which can be used to create long lists of blocks. These lists can be
executed by the CIPRICD without intervention from the CPU.

Most VT1 routines must be passed an address where they can create
a parameter block. Some routines, like vti config, require more then
one address. These addresses are supplied by the prograimner since the
VT1 routines and the VALET system do no memory managment. Until some
form of memory management is available in the OS, it is up to the
programmer to maintain memory
integrity.

and parameter block list address
In this document, routine parameter names specifying VME

system memory addresses end with “adds, such as pbadd.

Page 4

3 PARAMETER BLOCK CREATION AND LINKING

The routine vti make pb creates a parameter block at the supplied
address. In non-IiTk moae, each parameter block created has its link
field cleared. To create a list of parameter blocks, a call to
vti start pblink begins the link process. Each following call to
vti-make Fb still creates a block at the supplied address! but I inks
the- lasx parameter block created to the new one. This is done by
setting the last parameter block’s link field to the address of the
new parameter block. Thus, vti-makegb adds, when in link mode, the
new parameter block to the end of the block list. A call to
vti end pblink stops the linking process by returning to non-link
mod;. Starting the process over creates a new list of parameter
blocks. The link process is shown in the code fragment below:

. . .
100 vti-makegb (pbaddl, . ..) ! unlinked parameter block

. . .
200 vti startgblink
210 vti-makegb (pbadd2,

! begin linking of blocks

220 vtiaake-pb (pbadd3,
. ..) ! first record in list
. .) ! Second record in I ist

. . .
300 vti end pblink
310 vti-go -(pbadd2)

! end of linking
! go with list

320 vtizm-akegb (pbadd4, . ..) ! unlinked parameter block
. . .

The addresses are specified by the variables pbaddx, were x is a
number specifing a unique new address. A second way to make a linked
list is to call the high level routines while in linked mode. In this
way, the parameter blocks are not executed after the routines create
them, but are linked with previous blocks. The created list can then
be executed with a call to vtigo. This is shown in the following
example:

. . .
100 vti rewind (pbaddl, . ..) ! rewind tape
110 vti-start blink

- arc<(pbaddl, . ..) ! bn~iix~~~~ed yet 120
130

vt i-se
vti:resd (pbadd2, . . .) ! linked after search

200 ..: vti end
210 vti:go pbaddl) -P

blink

. . .

! stop link
! starts with search, then read, . . .

(NOTE: It is now possible to link parameter blocks, but the
interrupt handler is too simple to process the list (that is, to
handle multiple interrupts from one command). Because of the
primitive nature of the “background” processing under Valet-plus, it
is best to wait for a more sophisticated OS to handle full CIPRICO
support).

Page 5

4 POLLING AND INTERRUPTS

Two methods are used to monitor the processing of parameter
blocks. In polling mode, the gate field inside the executing
parameter block is tested in a loop which is exited if the Command
Complete bit is set. Polling should not be used when executing linked
parameter blocks.

When interrupt mode is used, a loop is entered until a interrupt
flag is set by an interrupt handler. The handler is executed upon an
interrupt.There are two handlers present, one for errors and one for
success. This type of interrupt handling is not much different then
polling, but Valet-plus has no “wait for interrupt” command. In a
multitasking environment, a wait for interrupt comnand would enable
the OS to block the waiting processes and execute other processes.

Page 6

5 STATUS REPORTING

Once a command, or list of commands, has been executed, the
status may be fetched in any of two ways. First, a call to
vti-display error will return the status code of the
executed. -For linked parameter blocks,

last command
the status returned is either

success or the error code for the error which halted list execution.
Vti display error also prints to the display device a message
indTcating The error code returned,

Status may also be fetched with a call to vti get error, which
returns status without displaying any messages.- f&e that these
routines should be called after a parameter block or
list is executed.

parameter block

Originally, status reporting was to be done in the interrupt
handler routines and returned to the main program through a parameter
in the command routine headers.
(get, put, print, etc.)

However, Valet-plus can not handle IO

pending.
correctly while interrupts from VME are

When a more sophisticated operating system becomes available
status reporting will be changed.

Page 7

6 ME ROUTINES

6.1 VT1 Initialize

1) VT1 INITIALIZE (ciprico-add, add-mod, inter)
VTIljIT

Description: This routine initializes internal VT1 data values.
It should be called once before any calls to other
VT1 routines.

Parameters:
ciprico-add (INT32, input): VME address of CIPRICO’s

add mod (INT32,
Attention Register.

input): Address modifier for use
by the CIPRICO to access system

inter (INT32,
memory.

input):’ If set to 1, VT1 uses interrupts
to monitor the CIPRICO. If set to
0, VT1 uses polling.

Page 8

6.2 Parameter Block Initialization

The vti-set-X routines set the field specified by X in a
parameter block. For example, vti set control sets the control field.
These routines are usually not usea bya program, they exsist for
by vti-make-pb.

use

1) VT&ME-PB (pbadd, corn, skp, rev, unt, sp, bc)

Desciption: This routine creates a parameter block at the supplied
VME system memory address.

Parameters:
pbadd (INT32, input): address where new parameter

block is to be created.
corn (INT32, input): the command code to be placed

in the command field.
skp (INT32, input): the skip bit value (1 or 0)
rev
unt

(INT32, input) : the reverse bit value (1 or 0)
(INT32, input) : the unit number (0 to 7)

sP (INT32,
bc

input): source/destination pointer value
(IM32, input): byte count value

8.3 Parameter Block Linking

1)

2)

W&TART-PBLINK

Description: Begin the linking of parameter blocks. Any calls
to vti_make pb after a call to vti startgblink
will link txe new parameter block xt the end of
the list of parameter blocks.

VT1 END-PBLINK
VTdrl

Description: Ends the linking of parameter blocks. Any calls to
vti-makegb after a call to vti end pblink will not link the parameter
block to the list. Once this pr%e&re is called the linked list is
closed to all further links. The procedure should be called before
another call to vti-startgblink or a call to vti-go with the list
as a parameter..

Page 9

6.4 Parameter Block Execution

1) K&GO (pbadd)

Description: Executes the parameter block at address pbadd.
Th,is procedure does either polling or interrupts
when waiting for the CIPRICO to complete
the conxnand (or list of commands). Polling or
interrupt monitoring is selected with the routine
WI-INITAILIZE.

Parameters :
pbadd (INT32, input): address of parameter block (or

address of first parameter block
in list of parameter blocks) to
be executed.

Page 10

6.5 Ring Buffer Record Initialize

1) VT1 MAKE-RB (rbadd, bent, sdptr)
VIMB

Description: Create a ring buffer record at the address rbadd.

Parameters:
rbadd (INT32, input) : address where new ring buffer

is to be created.
bent (INT32, input) :
sdptr (INT32, input) :

byte count field value
source/destination pointer

6.6 Ring Buffer Record Linking

1)

2)

VTTR;TART-RBLINK

Description: Starts the linking of ring buffer records. This
routine functions the same as vti startgblink
except that it works with ring buTfer records.

VT1 END-RBLINK
VTEKL

Description: Works the same as VT1 END PBLINK except the
orocedure functions wTt.h ting buifer records.

Page 11

6.7 Error Reporting

1) VT1 DISPLAY-ERROR (error)
VTDERR

Description: Returns and displays the status code of the last
completed operation. In linked parameter blocks
the status returned is either success (0) or the
code of the error which stoped execution of the
I ist.

Parameters:
error (INT32, output): The returned error code.

2) VT1 GET-ERROR (error)
VrGERR

Description: Same as vti display error except that the routine
does not display any error message.

Parameters:
error (INT32, output): The returned error code.

6.7.1 Update Status -

1) VT1 READ-STATUS (pbadd, unit)
VTR-ST

Description: Updates the two status bytes in the parameter block (at pbadd)

Parameters:
reflecting the current status of the selected drive.

pbadd (INT32, input): VME memory address for the returned
parameter block.

unit (INT32, input): The drive number

Page 12

6.6 Comand Routines

6.6.1 CIPRICO Configuration And Firmware Inforamtion -

1) VT1 CONFIGURE (pbadd, cfadd, bcont, tcl, sig, throt, retry, tc2)
VTCirN

Description: Configures the CIPRICO tape controler.

Parameters:
pbadd (INT32, input): address where a parameter

cfadd (INT32, I

bcont (INT32,
tcl (INT32,
sig (INT32,

block can be created.
address where a temporary
configuration block can be
created.
Bus control
Tape control 1
Signals

throt (INT32, input): Throttle
retry (IM32, input) : Retry value
tc2 (INT32, input) : Tape control 2

2) ~r~ACmCONFIG (pbadd, cfadd)

Description: Returns the configuration of the controler in a configuration
block.

Parameters:
pbadd (INT32, input): WE address where a parameter

block is created.
cfadd (INT32, input): WE address where configuration

block sill be created.

3) VT1 READ-ID (pbadd, f i rmwara-id)
VTRTD

Description: Returns the controler’s firmware ID.

Parameters:
pbadd (INT32, input): VhiE address where a parameter block

is created.
firmware-id (INT32, output): Returned ID

4) VT1 READ-DATE (pbadd, firmware-date)
VTRDATE

Description: Return the controler’s firmware date.

Parameters :
pbadd (INT32, input): WE address where routine creates a

parameter block.
firmware_date (INT32, output): Returned date

Page 13

6.8.2 Tape Rewind -

1) VTi$VIND (pbadd, unit)

Description: Rewinds the tape drive specified by the given unit number.

Parameters:
pbadd (INT32, input): address where a temporary parameter block

can be created.
unit (INT32, input): specifies the tape drive to rewind.

2) VTiT&ER-REWIND (pbadd, unit)

Description: Does a overlaped rewind on given unit.

Parameters:
pbadd (INT32, input): VME address for the creation of the

parameter block.
unit (INT32, input): Drive number

Page 14

6.8.3 Tape Read And Write -

1) VT1 READ (pbadd, buffadd, numbytes, unit)
VTRl5

Description: Reads a number of bytes from a tape to a memory buffer.

Parameter:
pbadd (INT32, input) : VME system memory address where a

parameter block is created.
buffadd (INT32, input) : VME address of system memory where data

buffer is located.
numbytes (INT32, input): Number of bytes to transfer from data

buffer.
unit (INT32, input): Tape drive number to do read from.

RITE (pbadd, buffadd, numbytes, unit)

Description: Write a number of bytes from a buffer to tape.

Parameters:
pbadd (INT32, input): address where a temporary

parameter block is created.
buffadd (INT32, input): VME address of system memory

where data buffer is located.
numbytes (INT32, input): Number of bytes to transfer to

data buffer.
unit (INT32, input): Tape drive number to do write to.

Page 15

6.8.4 Putting A Drive Offline -

1) VT1 OFF LINE (pbadd, unit)
VT~TFF -

Description: Rewinds the tape drive specified by unit and sets it offline.

Parameters:
pbadd (INT32, input): WE address where a temporary

parameter block is created.
unit (INT32, input): Tape drive number to set offline.

6.8.5 Drive Reset -

1) ~~~~SET-DRIVES (pbadd)

Description: Resets all drives connected to controler.

Parameters:
pbadd (INT32, input): VME memory address where a parameter block

can created.

Page 16

6.8.6 Tape Erase -

1) VT:$XEl-ERASE (pbadd, unit)

Description: Does a fixed erase on the given unit.

Parameters:
pbadd (INT32, input): WE memory address for the creation of the

parameter block.
unit (INT32, i nput) : Drive number

2) VT1 VAR-ERASE (pbadd, unit)
VTVER

Description: Does a variable length erase to end of tape on the given unit.

Parameters:
pbadd (INT32, input): VME memory address used to create a

parameter block.
unit (INT32, i nput) : Drive number

Page 17

6.8.7 Marking Files And Searching Files -

1)

2)

3)

zLARK-FILE (pbadd, unit)

Description: Marks a end of file on the given unit.

Parameters:
pbadd (INT32, input): VME memory address for parameter block.
unit (INT32, input): Drive number

VT1 SEARCH (pbadd, file-marks, unit)
VTSkcH

Description: Does a forward search a given number of file
marks on the given unit.

Parameters:
pbadd (INT32, input): WE address for parameter

block.
unit (INT32, input): Drive number

VT;T:$RCH-MULT (pbadd, file-marks, direction, unit)

Description: Does a search, in either direction, a given number of file
marks on a given unit.

Parameters:
pbadd

file marks
Dire%.ion

unit

6.8.8 Searching Records

1) VII&ACE-REC (pbadd,

Description: Spaces a given number of records on the given unit.

(INT32, input)

(INT32, input)
(INT32, input)

(INT32, i nput)

ret-num, unit)

WE system memory address for creation
of a parameter block.

Number of file marks to search.
Direction of search.
(1 = Change direction)
Drive number

Parameters:
pbadd (INT32, input) : VME memory address for parameter block.
ret num (INT32, input): Number of records to scan over.
uniX (INT32, input): Drive number

Page 18

6.8.9 CIPRICO Diagnostics -

1) VT1 DIAG 1 (pbadd) and VTI-DIAG-2 (pbadd)
VTDfAl and VlDIA2

Description: These routines do diagnostic tests on the CIPRICO. For
diagnostic test 2, the CIPRICO must be configured with the
diagnostic bit in the bus control by high.

Parameters (INT32, input): VME system memory address for creation of a
parameter block.

Page 19

7 REFERENCES

[l] Berners-Lee, T. et al. The VALET-PLUS, a VMEbus Microcoputer for Physics
Applications. Fith conference on Real Time Computer Applications in
Nuclear, Particle and Plasma Physics- San Francisco, May 1987

[2] Tapemaster 3000 VMEbus tape drive controler, Ciprico Product Specification.
Publication Number 21014000, Revision A- March 1987.

